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9. QUANTUM CHROMODYNAMICS AND ITS COUPLING

9.1. The QCD Lagrangian

Revised September 2005 by I. Hinchliffe (LBNL).

Quantum Chromodynamics (QCD), the gauge field theory which describes the
strong interactions of colored quarks and gluons, is one of the components of the
SU(3)×SU(2)×U(1) Standard Model. A quark of specific flavor (such as a charm quark)
comes in 3 colors; gluons come in eight colors; hadrons are color-singlet combinations of
quarks, anti-quarks, and gluons. The Lagrangian describing the interactions of quarks
and gluons is (up to gauge-fixing terms)

LQCD = −1
4
F

(a)
µν F (a)µν + i

∑
q

ψi
q γ

µ (Dµ)ij ψj
q

−
∑
q

mq ψ
i
q ψqi , (9.1)
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µν = ∂µ A

a
ν − ∂ν A

a
µ − gs fabc A

b
µ A

c
ν , (9.2)

(Dµ)ij = δij ∂µ + igs
∑
a

λa
i,j

2
Aa

µ , (9.3)

where gs is the QCD coupling constant, and the fabc are the structure constants of the
SU(3) algebra (the λ matrices and values for fabc can be found in “SU(3) Isoscalar Factors
and Representation Matrices,” Sec. 36 of this Review). The ψi

q(x) are the 4-component
Dirac spinors associated with each quark field of (3) color i and flavor q, and the Aa

µ(x)
are the (8) Yang-Mills (gluon) fields. A complete list of the Feynman rules which derive
from this Lagrangian, together with some useful color-algebra identities, can be found in
Ref. 1.

The principle of “asymptotic freedom” determines that the renormalized QCD coupling
is small only at high energies, and it is only in this domain that high-precision tests—
similar to those in QED—can be performed using perturbation theory. Nonetheless, there
has been in recent years much progress in understanding and quantifying the predictions
of QCD in the nonperturbative domain, for example, in soft hadronic processes and
on the lattice [2]. This short review will concentrate on QCD at short distances (large
momentum transfers), where perturbation theory is the standard tool. It will discuss the
processes that are used to determine the coupling constant of QCD. Other recent reviews
of the coupling constant measurements may be consulted for a different perspective [3–6].
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2 9. Quantum chromodynamics

9.2. The QCD coupling and renormalization scheme

The renormalization scale dependence of the effective QCD coupling αs = g2
s/4π is

controlled by the β-function:

µ
∂αs

∂µ
= 2β(αs) = −β0

2π
α2

s − β1

4π2
α3

s − β2

64π3
α4

s − · · · , (9.4a)

β0 = 11 − 2
3
nf , (9.4b)

β1 = 51 − 19
3
nf , (9.4c)

β2 = 2857 − 5033
9

nf +
325
27

n2
f , (9.4d)

where nf is the number of quarks with mass less than the energy scale µ. The expression
for the next term in this series (β3) can be found in Ref. 8. In solving this differential
equation for αs, a constant of integration is introduced. This constant is the fundamental
constant of QCD that must be determined from experiment in addition to the quark
masses. The most sensible choice for this constant is the value of αs at a fixed-reference
scale µ0. It has become standard to choose µ0 = MZ . The value at other values of µ

can be obtained from log(µ2/µ2
0) =

∫ αs(µ)
αs(µ0)

dα

β(α)
. It is also convenient to introduce the

dimensional parameter Λ, since this provides a parameterization of the µ dependence of
αs. The definition of Λ is arbitrary. One way to define it (adopted here) is to write a
solution of Eq. (9.4) as an expansion in inverse powers of ln (µ2):

αs(µ) =
4π

β0 ln (µ2/Λ2)

[
1 − 2β1

β2
0

ln
[
ln (µ2/Λ2)

]
ln (µ2/Λ2)

+
4β2

1

β4
0 ln2(µ2/Λ2)

×
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ln
[
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]
− 1

2

)2
+
β2β0

8β2
1

− 5
4

)]
. (9.5)

This solution illustrates the asymptotic freedom property: αs → 0 as µ → ∞ and shows
that QCD becomes strongly coupled at µ ∼ Λ.

Consider a “typical” QCD cross section which, when calculated perturbatively [7],
starts at O(αs):

σ = A1 αs + A2 α
2
s + · · · . (9.6)

The coefficients A1, A2 come from calculating the appropriate Feynman diagrams. In
performing such calculations, various divergences arise, and these must be regulated
in a consistent way. This requires a particular renormalization scheme (RS). The most
commonly used one is the modified minimal subtraction (MS) scheme [9]. This involves
continuing momentum integrals from 4 to 4–2ε dimensions, and then subtracting off the
resulting 1/ε poles and also (ln 4π−γE), which is an artifact of continuing the dimension.
(Here γE is the Euler-Mascheroni constant.) To preserve the dimensionless nature of
the coupling, a mass scale µ must also be introduced: g → µεg. The finite coefficients
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9. Quantum chromodynamics 3

Ai (i ≥ 2) thus obtained depend implicitly on the renormalization convention used and
explicitly on the scale µ.

The first two coefficients (β0, β1) in Eq. (9.4) are independent of the choice of RS. In
contrast, the coefficients of terms proportional to αn

s for n > 3 are RS-dependent. The
form given above for β2 is in the MS scheme.

The fundamental theorem of RS dependence is straightforward. Physical quantities,
such as the cross section calculated to all orders in perturbation theory, do not depend on
the RS. It follows that a truncated series does exhibit RS dependence. In practice, QCD
cross sections are known to leading order (LO), or to next-to-leading order (NLO), or in
some cases, to next-to-next-to-leading order (NNLO); and it is only the latter two cases,
which have reduced RS dependence, that are useful for precision tests. At NLO the RS
dependence is completely given by one condition which can be taken to be the value of
the renormalization scale µ. At NNLO this is not sufficient, and µ is no longer equivalent
to a choice of scheme; both must now be specified. One, therefore, has to address the
question of what is the “best” choice for µ within a given scheme, usually MS. There is no
definite answer to this question—higher-order corrections do not “fix” the scale, rather
they render the theoretical predictions less sensitive to its variation.

One should expect that choosing a scale µ characteristic of the typical energy scale (E)
in the process would be most appropriate. In general, a poor choice of scale generates
terms of order ln (E/µ) in the Ai’s. Various methods have been proposed including
choosing the scale for which the next-to-leading-order correction vanishes (“Fastest
Apparent Convergence [10]”); the scale for which the next-to-leading-order prediction
is stationary [11], (i.e., the value of µ where dσ/dµ = 0); or the scale dictated by
the effective charge scheme [12] or by the BLM scheme [13]. By comparing the values
of αs that different reasonable schemes give, an estimate of theoretical errors can be
obtained. It has also been suggested to replace the perturbation series by its Padé
approximant [14]. Results obtained using this method have, in certain cases, a reduced
scale dependence [15,16]. One can also attempt to determine the scale from data by
allowing it to vary and using a fit to determine it. This method can allow a determination
of the error due to the scale choice and can give more confidence in the end result [17].
In many of the cases discussed below this scale uncertainty is the dominant error.

An important corollary is that if the higher-order corrections are naturally small,
then the additional uncertainties introduced by the µ dependence are likely to be small.
There are some processes, however, for which the choice of scheme can influence the
extracted value of αs(MZ). There is no resolution to this problem other than to try to
calculate even more terms in the perturbation series. It is important to note that, since
the perturbation series is an asymptotic expansion, there is a limit to the precision with
which any theoretical quantity can be calculated. In some processes, the highest-order
perturbative terms may be comparable in size to nonperturbative corrections (sometimes
called higher-twist or renormalon effects, for a discussion see Ref. 18); an estimate of
these terms and their uncertainties is required if a value of αs is to be extracted.

Cases occur where there is more than one large scale, say µ1 and µ2. In these cases,
terms appear of the form log(µ1/µ2). If the ratio µ1/µ2 is large, these logarithms can
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4 9. Quantum chromodynamics

render naive perturbation theory unreliable and a modified perturbation expansion that
takes these terms into account must be used. A few examples are discussed below.

In the cases where the higher-order corrections to a process are known and are large,
some caution should be exercised when quoting the value of αs. In what follows, we will
attempt to indicate the size of the theoretical uncertainties on the extracted value of αs.
There are two simple ways to determine this error. First, we can estimate it by comparing
the value of αs(µ) obtained by fitting data using the QCD formula to highest known order
in αs, and then comparing it with the value obtained using the next-to-highest-order
formula (µ is chosen as the typical energy scale in the process). The corresponding Λ’s
are then obtained by evolving αs(µ) to µ = MZ using Eq. (9.4) to the same order in αs

as the fit. Alternatively, we can vary the value of µ over a reasonable range, extracting a
value of Λ for each choice of µ. This method is by its nature imprecise, since “reasonable”
involves a subjective judgment. In either case, if the perturbation series is well behaved,
the resulting error on αs(MZ) will be small.

In the above discussion we have ignored quark-mass effects, i.e., we have assumed
an idealized situation where quarks of mass greater than µ are neglected completely. In
this picture, the β-function coefficients change by discrete amounts as flavor thresholds
(a quark of mass M) are crossed when integrating the differential equation for αs. Now
imagine an experiment at energy scale µ; for example, this could be e+e− → hadrons
at center-of-mass energy µ. If µ � M , the mass M is negligible and the process is well
described by QCD with nf massless flavors and its parameter α(nf ) up to terms of order

M2/µ2. Conversely if µ � M , the heavy quark plays no role and the process is well
described by QCD with nf − 1 massless flavors and its parameter α(nf−1) up to terms of

order µ2/M2. If µ ∼M , the effects of the quark mass are process-dependent and cannot
be absorbed into the running coupling. The values of α(nf ) and α(nf−1) are related so
that a physical quantity calculated in both “theories” gives the same result [19]. This
implies, for µ = M

α(nf )(M) = α(nf−1)(M) − 11
72π2

α3
(nf−1)(M) + O

(
α4

(nf−1)

)
(9.7)

which is almost identical to the naive result α(nf )(M) = α(nf−1)(M). Here M is the
mass of the value of the running quark mass defined in the MS scheme (see the note on
“Quark Masses” in the Particle Listings for more details), i.e., where MMS(M) = M .

It also follows that, for a relationship such as Eq. (9.5) to remain valid for all values
of µ, Λ must also change as flavor thresholds are crossed, the value corresponds to an
effective number of massless quarks: Λ → Λ(nf ) [19,20]. The formulae are given in the
1998 edition of this review.

Experiments such as those from deep-inelastic scattering involve a range of energies.
After fitting to their measurements to QCD, the resulting fit can be expressed as a value
of αs(MZ).

Determinations of αs result from fits to data using NLO and NNLO: LO fits are not
useful and their values will not be used in the following. Care must be exercised when
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9. Quantum chromodynamics 5

comparing results from NLO and NNLO. In order to compare the values of αs from
various experiments, they must be evolved using the renormalization group to a common
scale. For convenience, this is taken to be the mass of the Z boson. The extrapolation
is performed using same order in perturbation theory as was used in the analysis.
This evolution uses third-order perturbation theory and can introduce additional errors
particularly if extrapolation from very small scales is used. The variation in the charm
and bottom quark masses (Mb = 4.3±0.2 GeV and Mc = 1.3±0.3 GeV are used [21]) can
also introduce errors. These result in a fixed value of αs(2 GeV) giving an uncertainty in
αs(MZ) = ±0.001 if only perturbative evolution is used. There could be additional errors
from nonperturbative effects that enter at low energy.

9.3. QCD in deep-inelastic scattering

The original and still one of the most powerful quantitative tests of perturbative
QCD is the breaking of Bjorken scaling in deep-inelastic lepton-hadron scattering. The
review ‘Structure Functions,” (Sec. 16 of this Review) describes the basic formalism
and reviews the data. αs is obtained together with the structure functions. The global
fit from MRST04 [13] of (Sec. 16) gives αs(MZ) = 0.1205 ± 0.004 from NLO and
αs(MZ) = 0.1167 ± 0.004 from NNLO. Other fits are consistent with these values but
cannot be averaged as they use overlapping data sets. The good agreement between the
NLO and NNLO fits indicates that the theoretical uncertainties are under control.

Nonsinglet structure functions offer in principle the most precise test of the theory
and cleanest way to extract αs, since the Q2 evolution is independent of the gluon
distribution, which is much more poorly constrained. The CCFR collaboration fit to
the Gross-Llewellyn Smith sum rule [23] whose value at leading order is determined by
baryon number and which is known to order α3

s [24,25] (̇NNLO); estimates of the order
α4

s term are available [26].

∫ 1

0
dx
(
F

νp
3 (x,Q2) + F

νp
3 (x,Q2)

)
=

3
[
1 − αs

π
(1 + 3.58

αs

π
+ 19.0

(αs

π
)2
)
− ∆HT

]
, (9.8)

where the higher-twist contribution ∆HT is estimated to be (0.09 ± 0.045)/Q2

in [24,27] and to be somewhat smaller by [28]. The CCFR collaboration [29],
combines their data with that from other experiments [30] and gives αs (

√
3 GeV) =

0.28 ± 0.035 (expt.) ± 0.05 (sys) +0.035
−0.03 (theory). The error from higher-twist terms

(assumed to be ∆HT = 0.05 ± 0.05) dominates the theoretical error. If the higher twist
result of [28] is used, the central value increases to 0.31 in agreement with the fit of [31].
This value corresponds to αs(MZ) = 0.118 ± 0.011. Fits of the Q2 evolution [32] of xF3

using the CCFR data using NNLO and estimates of NNNLO QCD and higher twist terms
enables the effect of these terms to be studied.

The spin-dependent structure functions, measured in polarized lepton-nucleon
scattering, can also be used to determine αs. Note that these experiments measure
asymmetries and rely on measurements of unpolarized data to extract the spin-dependent
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6 9. Quantum chromodynamics

structure functions. Here the values of Q2 ∼ 2.5 GeV2 are small, particularly for the E143
data [33], and higher-twist corrections are important. A fit [34] by an experimental group
using the measured spin dependent structure functions for several experiments [33,35]
as well as their own data has been made. When data from HERMES [36] and SMC are
included [37] αs(MZ) = 0.120 ± 0.009 is obtained: this is used in the final average.
αs can also be determined from the Bjorken spin sum rule [38]; a fit gives

αs(MZ) = 0.118+0.010
−0.024 [39]; consistent with an earlier determination [40], the larger error

being due to the extrapolation into the (unmeasured) small x region. Theoretically, the
sum rule is preferable as the perturbative QCD result is known to higher order and these
terms are important at the low Q2 involved. It has been shown that the theoretical
errors associated with the choice of scale are considerably reduced by the use of Padé
approximants [15], which results in αs(1.7 GeV) = 0.328 ± 0.03 (expt.) ± 0.025 (theory)
corresponding to αs(MZ) = 0.116 +0.003

−0.005 (expt.) ± 0.003 (theory). No error is included
from the extrapolation into the region of x that is unmeasured. Should data become
available at smaller values of x so that this extrapolation could be more tightly
constrained. This result is not used in the final average.

9.4. QCD in decays of the τ lepton

The semi-leptonic branching ratio of the tau (τ → ντ + hadrons, Rτ ) is an inclusive
quantity. It is related to the contribution of hadrons to the imaginary part of the W self
energy

(
Π(s)

)
. It is sensitive to a range of energies since it involves an integral

Rτ ∼
∫ m2

τ

0

ds

m2
τ
(1 − s

m2
τ
)2
(
(1 + 2s/m2

τ )ImΠ(1) + ImΠ(0)
)

(9.9)

where ImΠ(1) denotes the vector part and ImΠ(0) the scalar part. Since the scale
involved is low, one must take into account nonperturbative (higher-twist) contributions
which are suppressed by powers of the τ mass.

Rτ =3.058
[
1 + δEW +

αs(mτ )
π

+ 5.2
(αs(mτ )

π

)2
+ 26.4

(αs(mτ )
π

)3

+ a
m2

m2
τ

+ b
mψψ

m4
τ

+ c
ψψψψ

m6
τ

+ · · ·
]
. (9.10)

δEW = 0.0010 is the electroweak correction. Here a, b, and c are dimensionless constants
and m is a light quark mass. The term of order 1/m2

τ is a kinematical effect
due to the light quark masses and is consequently very small. The nonperturbative
terms are estimated using sum rules [41]. In total, they are estimated to be

−0.014± 0.005 [42,43]. This estimate relies on there being no term of order Λ2/m2
τ

(
note

that
αs(mτ )

π
∼ (

0.5 GeV
mτ

)2
)

. The a, b, and c can be determined from the data [44] by

fitting to moments of the Π(s) and separately to the final states accessed by the vector
and axial parts of the W coupling. The values so extracted [45,46] are consistent with the
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Figure 9.1: Summary of the value of αs(MZ) from various processes. The values
shown indicate the process and the measured value of αs extrapolated to µ = MZ .
The error shown is the total error including theoretical uncertainties. The average
quoted in this report which comes from these measurements is also shown. See text
for discussion of errors.

theoretical estimates. If the nonperturbative terms are omitted from the fit, the extracted
value of αs(mτ ) decreases by ∼ 0.02.

For αs(mτ ) = 0.35 the perturbative series for Rτ is Rτ ∼ 3.058(1+0.112+0.064+0.036).
The size (estimated error) of the nonperturbative term is 20% (7%) of the size of the
order α3

s term. The perturbation series is not very well convergent; if the order α3
s term

is omitted, the extracted value of αs(mτ ) increases by 0.05. The order α4
s term has been

estimated [47] and attempts made to resum the entire series [48,49]. These estimates can
be used to obtain an estimate of the errors due to these unknown terms [50,51]. Another
approach to estimating this α4

s term gives a contribution that is slightly larger than the
α3

s term [52].
Rτ can be extracted from the semi-leptonic branching ratio from the relation

Rτ = 1/(B(τ → eνν) − 1.97256); where B(τ → eνν) is measured directly or extracted
from the lifetime, the muon mass, and the muon lifetime assuming universality of lepton
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8 9. Quantum chromodynamics

couplings. Using the average lifetime of 290.6 ± 1.1 fs and a τ mass of 1776.99 ± 0.29
MeV from the PDG fit gives Rτ = 3.645± 0.020. The direct measurement of B(τ → eνν)
can be combined with B(τ → µνν) to give B(τ → eνν) = 0.1785 ± 0.0005 which
gives Rτ = 3.629 ± 0.015. Averaging these yields αs(mτ ) = 0.338 ± 0.004 using the
experimental error alone. We assign a theoretical error equal to 40% of the contribution
from the order α3 term and all of the nonperturbative contributions. This then gives
αs(mτ ) = 0.34 ± 0.03 for the final result. This corresponds to αs(MZ) = 0.120 ± 0.003.
This result is consistent with that obtained by using the moments [53] of the integrand
and is used in the average below.

9.5. QCD in high-energy hadron collisions

There are many ways in which perturbative QCD can be tested in high-energy
hadron colliders. The quantitative tests are only useful if the process in question has
been calculated beyond leading order in QCD perturbation theory. The production
of hadronic jets with large transverse momentum in hadron-hadron collisions provides
a direct probe of the scattering of quarks and gluons: qq → qq, qg → qg, gg → gg,
etc. Higher–order QCD calculations of the jet rates [54] and shapes are in impressive
agreement with data [55]. This agreement has led to the proposal that these data could
be used to provide a determination of αs [56]. A set of structure functions is assumed
and jet data are fitted over a very large range of transverse momenta to the QCD
prediction for the underlying scattering process that depends on αs. The evolution of
the coupling over this energy range (40 to 250 GeV) is therefore tested in the analysis.
CDF obtains αs(MZ) = 0.1178 ± 0.0001 (stat.) ± 0.0085 (syst.) [57]. Estimation of the
theoretical errors is not straightforward. The structure functions used depend implicitly
on αs and an iteration procedure must be used to obtain a consistent result; different
sets of structure functions yield different correlations between the two values of αs. CDF
includes a scale error of 4% and a structure function error of 5% in the determination of
αs. Ref. 56 estimates the error from unknown higher order QCD corrections to be ±0.005.
Combining these then gives αs(MZ) = 0.118 ± 0.011 which is used in the final average.
For additional comments on comparisons between these data and theory see Ref. 4. Data
are also available on the angular distribution of jets; these are also in agreement with
QCD expectations [58,59].

QCD corrections to Drell-Yan type cross sections (i.e., the production in hadron
collisions by quark-antiquark annihilation of lepton pairs of invariant mass Q from virtual
photons, or of real W or Z bosons), are known [60]. These O(αs) QCD corrections are
sizable at small values of Q. The correction to W and Z production, as measured in
pp collisions at

√
s = 0.63 TeV and

√
s = 1.8, 1.96 TeV, is of order 30%. The NNLO

corrections to this process are known [61].
The production of W and Z bosons and photons at large transverse momentum

can also be used to test QCD. The leading-order QCD subprocesses are qq → V g and
qg → V q (V = W,Z, γ). If the parton distributions are taken from other processes and a
value of αs assumed, then an absolute prediction is obtained. Conversely, the data can
be used to extract information on quark and gluon distributions and on the value of αs.
The next-to-leading-order QCD corrections are known for photons [62,63], and for W/Z

March 15, 2006 14:11



9. Quantum chromodynamics 9

production [64], and so a precision test is possible. Data exist on photon production from
the CDF and DØ collaborations [65,66] and from fixed target experiments [67]. Detailed
comparisons with QCD predictions [68] may indicate an excess of the data over the
theoretical prediction at low value of transverse momenta, although other authors [69]
find smaller excesses.

The UA2 collaboration [70] extracted a value of αs(MW ) = 0.123 ± 0.018 (stat.) ±
0.017 (syst.) from the measured ratio RW =

σ(W + 1jet)
σ(W + 0jet)

. The result depends on the

algorithm used to define a jet, and the dominant systematic errors due to fragmentation
and corrections for underlying events (the former causes jet energy to be lost, the latter
causes it to be increased) are connected to the algorithm. There is also dependence on
the parton distribution functions, and hence, αs appears explicitly in the formula for
RW , and implicitly in the distribution functions. The UA2 result is not used in the final
average. Data from CDF and DØ on the W pt distribution [71] are in agreement with
QCD but are not able to determine αs with sufficient precision to have any weight in a
global average.

In the region of low pt, the fixed order perturbation theory is not applicable; one must
sum terms of order αn

s lnn(pt/MW ) [72]. Data from DØ [73] on the pt distribution of Z
bosons agree well with these predictions.

The production rates of b quarks in pp have been used to determine αs [74]. The
next-to-leading-order QCD production processes [75] have been used. By selecting events
where the b quarks are back-to-back in azimuth, the next-to-leading-order calculation
can be used to compare rates to the measured value and a value of αs extracted.
The errors are dominated by the measurement errors, the choice of µ and the scale at
which the structure functions are evaluated, and uncertainties in the choice of structure
functions. The last were estimated by varying the structure functions used. The result
is αs(MZ) = 0.113+0.009

−0.013, which is not included in the final average, as the measured bb
cross section is not in very good agreement with perturbative QCD [76] and it is therefore
difficult to interpret this result. Recent improvments in the theoretical undestanding [77]
and measurements from CDF [78] now show good agreement between the measured
cross-sections and the QCD predictions but there is no extraction of αs using these.

9.6. QCD in heavy-quarkonium decay

Under the assumption that the hadronic and leptonic decay widths of heavy QQ
resonances can be factorized into a nonperturbative part—dependent on the confining
potential—and a calculable perturbative part, the ratios of partial decay widths allow
measurements of αs at the heavy-quark mass scale. The most precise data come from the
decay widths of the 1−− J/ψ(1S) and Υ resonances. The total decay width of the Υ is
predicted by perturbative QCD [79,80]

Rµ(Υ ) =
Γ(Υ → hadrons)
Γ(Υ → µ+µ−)

=
10(π2 − 9)α3

s(Mb)
9πα2

em
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10 9. Quantum chromodynamics

×
[
1 +

αs

π

(
−14.05 +

3β0

2

(
1.161 + ln

(2Mb

MΥ

)))]
. (9.11)

Data are available for the Υ , Υ ′, Υ ′′, and J/ψ. The result is very sensitive to αs and the
data are sufficiently precise (Rµ(Υ ) = 37.28 ± 0.75) [81] that the theoretical errors will
dominate. There are theoretical corrections to this formula due to the relativistic nature of
the QQ system which have been calculated [80] to order v2/c2. These corrections are more
severe for the J/ψ. There are also nonperturbative corrections arising from annihilation
from higher Fock states (“color octet” contribution) which can only be estimated [82];
again these are more severe for the J/ψ. The Υ gives αs(Mb) = 0.183 ± 0.01, where the
error includes that from the ”color octet” term and the choice of scale which together

dominate. The ratio of widths
Υ → γgg

Υ → ggg
has been measured by the CLEO collaboration

and can be used to determine αs(Mb) = 0.189 ± 0.01 ± 0.01. The error is dominated
by theoretical uncertainties associated with the scale choice; the uncertainty due to the
”color octet” piece is not present in this case [83]. The theoretical uncertainties due
to the production of photons in fragmentation [84] are small [85]. Higher order QCD
calculations of the photon energy distribution are available [86]; this distribution could
now be used to further test the theory. The width Γ(Υ → e+e−) can also be used

to determine αs by using moments of the quantity Rb(s) =
σ(e+e− → bb)

σ(e+e− → µ+µ−)
defined

by Mn =
∫∞
0

Rb(s)
sn+1

[87]. At large values of n, Mn is dominated by Γ(Υ → e+e−).

Higher order corrections are available and the method gives αs(Mb) = 0.220 ± 0.027 [88].
The dominant error is theoretical and is dominated by the choice of scale and by
uncertainties in Coulomb corrections that have been resummed in Ref. 89. These various
Υ decay measurements can be combined and give αs(Mb) = 0.185± 0.01 corresponding to
αs(MZ) = 0.109± 0.004 which is used in the final average [83]. The mass of charmonium
can also be used for determination of αs after taking into account effects of analytic
continuation (π2-terms summation), and Coulomb summation [90].

9.7. Perturbative QCD in e+e− collisions

The total cross section for e+e− → hadrons is obtained (at low values of
√
s) by

multiplying the muon-pair cross section by the factor R = 3Σqe
2
q . The higher-order QCD

corrections to this quantity have been calculated, and the results can be expressed in
terms of the factor:

R = R(0)
[
1 +

αs

π
+ C2

(αs

π

)2
+ C3

(αs

π

)3
+ · · ·

]
, (9.12)

where C2 = 1.411 and C3 = −12.8 [91].

R(0) can be obtained from the formula for dσ/dΩ for e+e− → ff by integrating over
Ω. The formula is given in Sec. 39.2 of this Review. This result is only correct in the
zero-quark-mass limit. The O(αs) corrections are also known for massive quarks [92].
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9. Quantum chromodynamics 11

The principal advantage of determining αs from R in e+e− annihilation is that there is
no dependence on fragmentation models, jet algorithms, etc.

A measurement by CLEO [93] at
√
s = 10.52 GeV yields αs(10.52 GeV) =

0.20±0.01±0.06, which corresponds to αs(MZ) = 0.130±0.005±0.03. A comparison of the
theoretical prediction of Eq. (9.12) (corrected for the b-quark mass), with all the available
data at values of

√
s between 20 and 65 GeV, gives [94] αs(35 GeV) = 0.146±0.030 . The

size of the order α3
s term is of order 40% of that of the order α2

s and 3% of the order αs.
If the order α3

s term is not included, a fit to the data yields αs (35 GeV) = 0.142± 0.030,
indicating that the theoretical uncertainty is smaller than the experimental error.

Measurements of the ratio of hadronic to leptonic width of the Z at LEP and SLC,
Γh/Γµ probe the same quantity as R. Using the average of Γh/Γµ = 20.767 ± 0.025
gives αs(MZ) = 0.1226 ± 0.0038 [95]. In performing this extraction it is necessary to
include the electroweak corrections to the Z width. As these must be calculated beyond
leading order, they depend on the top top-quark and Higgs masses. The latter is not yet
meausured an is inferred from global fits to the electroweak data. There are additional
theoretical errors arising from the choice of QCD scale. While this method has small
theoretical uncertainties from QCD itself, it relies sensitively on the electroweak couplings
of the Z to quarks [96]. The presence of new physics which changes these couplings via
electroweak radiative corrections would invalidate the value of αs(MZ). An illustration
of the sensitivity can be obtained by comparing this value with the one obtained from
the global fits [95] of the various precision measurements at LEP/SLC and the W
and top masses: αs(MZ) = 0.1186 ± 0.0027. The difference between these two values
may be accounted for by systematic uncertainties as large as ±0.003 [95], therefore
αs(MZ) = 0.1186 ± 0.0042 will be used in the final average.

An alternative method of determining αs in e+e− annihilation is from measuring
quantities that are sensitive to the relative rates of two-, three-, and four-jet events. A
review should be consulted for more details [97] of the issues mentioned briefly here.
In addition to simply counting jets, there are many possible choices of such “shape
variables”: thrust [98], energy-energy correlations [99], average jet mass, etc. All of these
are infrared safe, which means they can be reliably calculated in perturbation theory.
The starting point for all these quantities is the multijet cross section. For example, at
order αs, for the process e+e− → qqg: [100]

1
σ

d2σ

dx1dx2
=

2αs

3π
x2

1 + x2
2

(1 − x1)(1 − x2)
, (9.13)

xi =
2Ei√
s

(9.14)

where xi are the center-of-mass energy fractions of the final-state (massless) quarks. A
distribution in a “three-jet” variable, such as those listed above, is obtained by integrating
this differential cross section over an appropriate phase space region for a fixed value of
the variable. The order α2

s corrections to this process have been computed, as well as the
4-jet final states such as e+e− → qqgg [101].
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12 9. Quantum chromodynamics

There are many methods used by the e+e− experimental groups to determine αs

from the event topology. The jet-counting algorithm, originally introduced by the JADE
collaboration [102], has been used by many other groups. Here, particles of momenta
pi and pj are combined into a pseudo-particle of momentum pi + pj if the invariant
mass of the pair is less than y0

√
s. The process is iterated until all pairs of particles or

pseudoparticles have a mass-measure that exceeds y0
√
s; the remaining number is then

defined to be the jet multiplicity. The remaining number is then defined to be the number
of jets in the event, and can be compared to the QCD prediction. The Durham algorithm
is slightly different: in combining a pair of partons, it uses M2 = 2min(E2

i , E
2
j )(1−cos θij)

for partons of energies Ei and Ej separated by angle θij [103].
There are theoretical ambiguities in the way this process is carried out. Quarks and

gluons are massless, whereas the observed hadrons are not, so that the massive jets that
result from this scheme cannot be compared directly to the jets of perturbative QCD.
Different recombination schemes have been tried, for example combining 3-momenta and
then rescaling the energy of the cluster so that it remains massless. These schemes result
in the same data giving slightly different values [104,105] of αs. These differences can be
used to determine a systematic error. In addition, since what is observed are hadrons
rather than quarks and gluons, a model is needed to describe the evolution of a partonic
final state into one involving hadrons, so that detector corrections can be applied. The
QCD matrix elements are combined with a parton-fragmentation model. This model can
then be used to correct the data for a direct comparison with the parton calculation.
The different hadronization models that are used [106–109] model the dynamics that
are controlled by nonperturbative QCD effects which we cannot yet calculate. The
fragmentation parameters of these Monte Carlos are tuned to get agreement with the
observed data. The differences between these models contribute to the systematic errors.
The systematic errors from recombination schemes and fragmentation effects dominate
over the statistical and other errors of the LEP/SLD experiments.

The scale M at which αs(M) is to be evaluated is not clear. The invariant mass of a
typical jet (or

√
sy0) is probably a more appropriate choice than the e+e− center-of-mass

energy. While there is no justification for doing so, if the value is allowed to float in the
fit to the data, the fit improves and the data tend to prefer values of order

√
s/10 GeV

for some variables [105,110]; the exact value depends on the variable that is fitted.
The perturbative QCD formulae can break down in special kinematical configurations.

For example, the thrust (T ) distribution contains terms of the type αs ln2(1 − T ). The
higher orders in the perturbation expansion contain terms of order αn

s lnm(1 − T ). For
T ∼ 1 (the region populated by 2-jet events), the perturbation expansion is unreliable.
The terms with n ≤ m can be summed to all orders in αs [111]. If the jet recombination
methods are used higher-order terms involve αn

s lnm(y0), these too can be resummed [112]
The resummed results give better agreement with the data at large values of T . Some
caution should be exercised in using these resummed results because of the possibility of
overcounting; the showering Monte Carlos that are used for the fragmentation corrections
also generate some of these leading-log corrections. Different schemes for combining the
order α2

s and the resummations are available [113]. These different schemes result in
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9. Quantum chromodynamics 13

shifts in αs of order ±0.002. The use of the resummed results improves the agreement
between the data and the theory; for more details see Ref. 114. An average of results at
the Z resonance from SLD [105], OPAL [115], L3 [116], ALEPH [117], and DELPHI [118],
using the combined α2

s and resummation fitting to a large set of shape variables, gives
αs(MZ) = 0.122 ± 0.007. The errors in the values of αs(MZ) from these shape variables
are totally dominated by the theoretical uncertainties associated with the choice of scale,
and the effects of hadronization Monte Carlos on the different quantities fitted.

Estimates are available for the nonperturbative corrections to the mean value of
1 − T [119]. These are of order 1/E and involve a single parameter to be determined
from experiment. These corrections can then be used as an alternative to those modeled
by the fragmentation Monte Carlos. The DELPHI collaboration has fitted its data using
an additional parameter to take into account these 1/E effects [120] and quotes for the
MS scheme αs = 0.1217 ± 0.0046 and a significant 1/E term. This term vanishes in the
RGI/ECH scheme and the data are well described by pure perturbation theory with
consistent αs = 0.1201 ± 0.0020.

Studies have been carried out at energies between ∼130 GeV [121] and ∼200 GeV
[122]. These can be combined to give αs(130 GeV) = 0.114 ± 0.008 and αs(189 GeV) =
0.1104 ± 0.005. The dominant errors are theoretical and systematic and, most of these
are in common at the two energies. These data and those at the Z resonance and below
provide clear confirmation of the expected decrease in αs as the energy is increased.

The LEP QCD working group [123] uses all LEP data Z mass and higher energies
to perform a global fit using a large number of shape variables. It determines
αs(MZ) = 0.1202±0.0003 (stat)±0.0049 (syst), (result quoted in Ref. 6) the error being
dominated by theoretical uncertainties which are the most difficult to quantify.

Similar studies on event shapes have been undertaken at lower energies at TRISTAN,
PEP/PETRA, and CLEO. A combined result from various shape parameters by the
TOPAZ collaboration gives αs(58 GeV) = 0.125 ± 0.009, using the fixed order QCD
result, and αs(58 GeV) = 0.132 ± 0.008 (corresponding to αs(MZ) = 0.123 ± 0.007),
using the same method as in the SLD and LEP average [124]. The measurements
of event shapes at PEP/PETRA are summarized in earlier editions of this note. A
recent reevaluation of the JADE data [125] obtained using resummed QCD results with
modern models of jet fragmentation and by averaging over several shape variables gives
αs(22 GeV) = 0.151 ± 0.004 (expt) +0.014

−0.012 (theory) which is used in the final average.
These results also attempt to constrain the non-perurbative parameters and show a
remarkable agreement with QCD even at low energies [126]. An analysis by the TPC
group [127] gives αs(29 GeV) = 0.160 ± 0.012, using the same method as TOPAZ.

The CLEO collaboration fits to the order α2
s results for the two jet fraction at

√
s =

10.53 GeV, and obtains αs(10.53 GeV) = 0.164 ± 0.004 (expt.) ± 0.014 (theory) [128].
The dominant systematic error arises from the choice of scale (µ), and is determined from
the range of αs that results from fit with µ = 10.53 GeV, and a fit where µ is allowed
to vary to get the lowest χ2. The latter results in µ = 1.2 GeV. Since the quoted result
corresponds to αs(1.2 GeV) = 0.35, it is by no means clear that the perturbative QCD
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14 9. Quantum chromodynamics

expression is reliable and the resulting error should, therefore, be treated with caution.
A fit to many different variables as is done in the LEP/SLC analyses would give added
confidence to the quoted error.

All these measurements are consistent with the LEP average quoted above which has
the smallest statistical error; the systematic errors being mostly theoretical are likely to
be strongly correlated between the measurements. The value of αs(MZ) = 0.1202± 0.005
is used in the final average.

The four jet final states can be used to measure the color factors of QCD, related to the
relate strength of the couplings of quarks and gluons to each other. While these factors
are not free parameters, the agreement between the measurements and expectations
provides more evidence for the validity of QCD. The results are summarized in Ref. 129.

9.8. Scaling violations in fragmentation functions

Measurements of the fragmentation function di(z, E), (the probability that a hadron
of type i be produced with energy zE in e+e− collisions at

√
s = 2E) can be used to

determine αs. (Detailed definitions and a discussion of the properties of fragmentation
functions can be found in Sec. 17 of this Review). As in the case of scaling violations
in structure functions, perturbative QCD predicts only the E dependence. Hence,
measurements at different energies are needed to extract a value of αs. Because the
QCD evolution mixes the fragmentation functions for each quark flavor with the gluon
fragmentation function, it is necessary to determine each of these before αs can be
extracted.

The ALEPH collaboration has used data from energies ranging from
√
s = 22

GeV to
√
s = 91 GeV. A flavor tag is used to discriminate between different quark

species, and the longitudinal and transverse cross sections are used to extract the gluon
fragmentation function [130]. The result obtained is αs(MZ) = 0.126 ± 0.007 (expt.) ±
0.006 (theory) [131]. The theory error is due mainly to the choice of scale. The OPAL
collaboration [132] has also extracted the separate fragmentation functions. DELPHI [133]
has also performed a similar analysis using data from other experiments at lower energy
with the result αs(MZ) = 0.124 ± 0.007 (expt.) ± 0.009 (theory). The larger theoretical
error is due to the larger range of scales that were used in the fit. These results can be
combined to give αs(MZ) = 0.125 ± 0.005 (expt.) ± 0.008 (theory).

A global analysis [134] uses data on the production of π,K, p, and p from SLC [135],
DELPHI [136], OPAL [137], ALEPH [138], and lower-energy data from the TPC
collaboration [139]. A flavor tag and a three-jet analysis is used to disentangle the
quark and gluon fragmentation functions. The value αs(MZ) = 0.1172+0.0055+0.0017

−0.0069−0.0025 is
obtained. The second error is a theoretical one arising from the choice of scale. The
fragmentation functions resulting from this fit are consistent with a recent fit of [140].

It is unclear how to combine the measurements discussed in the two previous
paragraphs as much of the data used are common to both. If the theoretical errors
dominate then a simple average is appropriate as the methods are different. For want of
a better solution, the naive average of αs(MZ) = 0.1201 ± 0.006 is used in the average
value quoted below.
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9.9. Photon structure functions

e+e− can also be used to study photon-photon interactions, which can be used
to measure the structure function of a photon [141], by selecting events of the type
e+e− → e+e− +hadrons which proceeds via two photon scattering. If events are selected
where one of the photons is almost on mass shell and the other has a large invariant
mass Q, then the latter probes the photon structure function at scale Q; the process is
analogous to deep inelastic scattering where a highly virtual photon is used to probe
the proton structure. This process was included in earlier versions of this Review which
can be consulted for details on older measurements [142–145]. A review of the data can
be found in [146]. Data are available from LEP [147–151] and from TRISTAN [152,153]
which extend the range of Q2 to of order 300 GeV2 and x as low as 2× 10−3and show Q2

dependence of the structure function that is consistent with QCD expectations. There is
evidence for a hadronic (non-perturbative) component to the photon structure function
that complicates attempts to extract a value of αs from the data.

Ref. 154 uses data from PETRA, TRISTAN, and LEP to perform a combined fit. The
higher data from LEP extend to higher Q2 (< 780 GeV2) and enable a measurement:
αs(mZ) = 0.1198 ± 0.0054 which now is competitive with other results.

Experiments at HERA can also probe the photon structure function by looking at
jet production in γp collisions; this is analogous to the jet production in hadron-hadron
collisions which is sensitive to hadron structure functions. The data [155] are consistent
with theoretical models [156].

9.10. Jet rates in ep collisions

At lowest order in αs, the ep scattering process produces a final state of (1+1)
jets, one from the proton fragment and the other from the quark knocked out by
the process e + quark → e + quark. At next order in αs, a gluon can be radiated,
and hence a (2+1) jet final state produced. By comparing the rates for these (1+1)
and (2+1) jet processes, a value of αs can be obtained. A NLO QCD calculation
is available [157]. The basic methodology is similar to that used in the jet counting
experiments in e+e− annihilation discussed above. Unlike those measurements, the ones
in ep scattering are not at a fixed value of Q2. In addition to the systematic errors
associated with the jet definitions, there are additional ones since the structure functions
enter into the rate calculations. A summary of the measurements from HERA can be
found in Ref. 158, which clearly demonstrates the evidence for the evolution of αs(Q2)
with Q2. Results from H1 [159] αs(MZ) = 0.1175 ± 0.002 (expt.) ± 0.0053 (theor.) and
ZEUS [160] αs(MZ) = 0.1179 ± 0.0040 (expt.) ± 0.005 (theor.) can be combined to give
αs(MZ) = 0.1178 ± 0.0033 (expt.) ± 0.006 (theor.). which is used in the final average.
The theoretical errors arise from scale choice, structure functions, and jet definitions.

Photoproduction of two or more jets via processes such as γ + g → qq can also
be observed at HERA. The process is similar to jet production in hadron-hadron
collisions. Agreement with perturbative QCD is excellent and ZEUS [161] quotes
αs(MZ) = 0.1224 ± 0.0020 (expt) ± 0.0050 (theory) which is used in the average below.
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16 9. Quantum chromodynamics

9.11. QCD in diffractive events

In approximately 10% of the deep-inelastic scattering events at HERA a rapidity gap
is observed [162]; that is events are seen where there are almost no hadrons produced in
the direction of the incident proton. This was unexpected; QCD based models of the final
state predicted that the rapidity interval between the quark that is hit by the electron and
the proton remnant should be populated approximately evenly by the hadrons. Similar
phenomena have been observed at the Tevatron in W and jet production. For a review
see Ref. 163.

9.12. Lattice QCD

Lattice gauge theory can be used to calculate, using non-perturbative methods, a
physical quantity that can be measured experimentally. The value of this quantity
can then be used to determine the QCD coupling that enters in the calculation. The
main theoretical differance between this approach and those discussed above is that,
in the previous cases, precise calculations are restricted to high energy phenomena
where perturbation theory can be applied due to the smallness of αs in the appropriate
energy regime. Lattice calculations enable reliable calculations to be done without this
restriction. It is important to emphasize that this is exactly the same methodology used
in the cases discussed above. The main quantitative difference is that the experimental
measurements involved, such as the masses of Υ states, are so precise that their
uncertainties have almost no impact on the final comparisons. A discussion of the
uncertainties that enter into the QCD tests and determination of αs is therefore almost
exclusively a discussion of the techniques used in the calculations. In addition to αs,
other physical quantities such as the masses of the light quarks can be obtained. For a
review of the methodology, see Ref. 164 [165]. For example, the energy levels of a QQ
system can be determined and then used to extract αs. The masses of the QQ states
depend only on the quark mass and on αs. Until a few years ago, calculations have
not been performed for three light quark flavors. Results for zero (nf = 0, quenched
approximation) and two light flavors were extrapolated to nf = 3. This major limitation
has now been removed and a qualitative improvement in the calculations has occurred.
Using the mass differences of Υ and Υ ′ and Υ ′′ and χb, Mason et al. [167] extract a value
of αs(MZ) = 0.1170 ± 0.0012. Many other quantities such as the pion decay constant,
and the masses of the Bs meson and Ω baryon are used and the overall consistency is
excellent.

There have also been investigations of the running of αs [173]. These show remarkable
agreement with the two loop perturbative result of Eq. (9.5).

There are several sources of error in these estimates of αs(MZ). The experimental
error associated with the measurements of the particle masses is negligible. The limited
statistics of the Monte-Carlo calculation which can be improved only with more
computational resources is one dominant error. The conversion from the lattice coupling
constant to the MS constant is obtained using a perturbative expansion where one
coupling expanded as a power series in the other. The series is known to third order and
this leads to the second largest uncertainty [166]. Extra degrees of freedom introduced
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by calculating (using staggered fermions) on a lattice have to be removed: see Ref. 174
for a discussion of this point and the possible uncertainties related to it. The use of
Wilson fermions involves a differant systematic. Results from Ref. 175 using this method
with two light quark flavors are αs(MZ) = 0.112 ± 0.003, which illustrates the tendency
for results using Wilson fermions to be systematically lower than those from staggered
fermions.

In this review, we will use only the new result [166] of αs(MZ) = 0.1170 ± 0.0012,
which is consistent with the value αs(MZ) = 0.121± 0.003 used in the last version of this
review [167].

In addition to the strong coupling constant other quantities can be determined
including the light quark masses [168]. Of particular interest are the decay constants of
charmed and bottom mesons. These are required, for example, to facilitate the extraction
of CKM elements from measurements of charm and bottom decay rates [169,170]. Some
of these quantities such as the D-meson decay constant have been found to be in excellent
agreement with experiment [171].

9.13. Conclusions

The need for brevity has meant that many other important topics in QCD
phenomenology have had to be omitted from this review. One should mention in
particular the study of exclusive processes (form factors, elastic scattering, . . .), the
behavior of quarks and gluons in nuclei, the spin properties of the theory, and QCD
effects in hadron spectroscopy.

We have focused on those high-energy processes which currently offer the most
quantitative tests of perturbative QCD. Figure 9.1 shows the values of αs(MZ) deduced
from the various experiments. Figure 9.2 shows the values and the values of Q where
they are measured. This figure clearly shows the experimental evidence for the variation
of αs(Q) with Q.

An average of the values in Fig. 9.1 gives αs(MZ) = 0.1176, with a total χ2 of 9
for eleven fitted points, showing good consistency among the data. The error on this
average, assuming that all of the errors in the contributing results are uncorrelated, is
±0.0009, and may be an underestimate. Almost all of the values used in the average are
dominated by systematic, usually theoretical, errors. Only some of these, notably from
the choice of scale, are correlated. The error on the lattice gauge theory result is the
smallest and then there are several results with comparable small errors: these are the
ones from τ decay, deep inelastic scattering, Υ decay and the Z0 width. Omitting the
lattice-QCD result from the average changes it to αs(MZ) = 0.1185 or 1σ. All of the
results that dominate the average are from NNLO. The NLO results have little weight,
there are no LO results used. Almost all of the results have errors that are dominated by
theoretical issues, either from unknown higher order perturbative corrections or estimates
of non-perturbative contributions. It is therefore prudent be conservative and quote our
average value as αs(MZ) = 0.1176± 0.002. Note that the average has moved by less than
1σ from the last version of this review. Future experiments can be expected to improve
the measurements of αs somewhat.
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Figure 9.2: Summary of the values of αs(µ) at the values of µ where they are
measured. The lines show the central values and the ±1σ limits of our average.
The figure clearly shows the decrease in αs(µ) with increasing µ. The data are,
in increasing order of µ, τ width, Υ decays, deep inelastic scattering, e+e− event
shapes at 22 GeV from the JADE data, shapes at TRISTAN at 58 GeV, Z width,
and e+e− event shapes at 135 and 189 GeV.

The value of αs at any scale corresponding to our average can be obtained
from http://www-theory.lbl.gov/∼ianh/alpha/alpha.html which uses Eq. (9.5) to
interpolate.
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